«Ο Αρχιμήδης θα μνημονευθεί όταν ο Αισχύλος θα έχει λησμονηθεί, διότι οι γλώσσες πεθαίνουν, μα οι μαθηματικές ιδέες όχι.» G.Hardy


Δευτέρα 16 Φεβρουαρίου 2026

Ο Οδοντίατρος που Αγάπησε τη Γεωμετρία

 

#Σανσημερα

Σαν σήμερα ,το 1997 πέθανε ο Leon Bankoff.

Ο Leon Bankoff ( 1908– 1997) ήταν Αμερικανός οδοντίατρος και μαθηματικός.

Μετά από φοίτηση στο City College of New York, ο Bankoff σπούδασε οδοντιατρική στο New York University. Αργότερα μετακόμισε στο Λος Άντζελες της Καλιφόρνιας, όπου δίδαξε στο University of Southern California· κατά την παραμονή του εκεί ολοκλήρωσε και τις σπουδές του. Άσκησε το επάγγελμα του οδοντιάτρου για περισσότερα από 60 χρόνια στο Μπέβερλι Χιλς, έχοντας μεταξύ των ασθενών του πολλές διασημότητες.

Παράλληλα με το ενδιαφέρον του για την οδοντιατρική, ασχολήθηκε με το πιάνο και την κιθάρα. Μιλούσε άπταιστα Εσπεράντο, δημιουργούσε καλλιτεχνικά γλυπτά και ενδιαφερόταν για τη ραγδαία εξέλιξη της τεχνολογίας των υπολογιστών. Πάνω απ’ όλα, όμως, ήταν βαθύς γνώστης των μαθηματικών και ιδιαίτερα σεβαστός ως ειδικός στη γεωμετρία του επιπέδου. Από τη δεκαετία του 1940 έδινε διαλέξεις και δημοσίευε πολυάριθμα άρθρα ως συν-συγγραφέας. Συνεργάστηκε με τον Paul Erdős σε μαθηματική εργασία και, ως εκ τούτου, έχει αριθμό Erdős 1.

Από το 1968 έως το 1981 διετέλεσε επιμελητής του Τμήματος Προβλημάτων του περιοδικού της Pi Mu Epsilon,(2ο σχόλιο) όπου ήταν υπεύθυνος για τη δημοσίευση περίπου 300 απαιτητικών προβλημάτων στον τομέα της επιπεδογεωμετρίας, ιδίως σχετικά με το θεώρημα τριχοτόμησης γωνίας του Frank Morley και τον άρβελο του Archimedes. Μεταξύ των ανακαλύψεών του σχετικά με τον άρβελο συγκαταλέγεται ο κύκλος του Bankoff, ο οποίος έχει ίσο εμβαδόν με τους δίδυμους κύκλους του Αρχιμήδη. Ο Martin Gardner χαρακτήρισε τον Bankoff «έναν από τους πιο αξιοσημείωτους μαθηματικούς που είχα το προνόμιο να γνωρίσω».

Ο κύκλος του Bankoff σχηματίζεται από τρία ημικύκλια που δημιουργούν έναν άρβελο. Στη συνέχεια κατασκευάζεται ένας κύκλος C1, εφαπτόμενος και στα τρία ημικύκλια, ως ειδική περίπτωση του προβλήματος του Απολλωνίου. Έπειτα κατασκευάζεται ένας δεύτερος κύκλος C2, ο οποίος διέρχεται από τρία σημεία: τα δύο σημεία επαφής του C1 με τα δύο μικρότερα ημικύκλια και το σημείο στο οποίο τα δύο μικρότερα ημικύκλια εφάπτονται μεταξύ τους. Ο C2 είναι ο κύκλος του Bankoff.



Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Related Posts Plugin for WordPress, Blogger...