«Ο Αρχιμήδης θα μνημονευθεί όταν ο Αισχύλος θα έχει λησμονηθεί, διότι οι γλώσσες πεθαίνουν, μα οι μαθηματικές ιδέες όχι.» G.Hardy


Τετάρτη, 25 Ιανουαρίου 2012

Πολλαπλασιασμοί για κάθε ..γούστο!!!



H πράξη του πολλαπλασιασμού  σε διάφορες κουλτούρες . 

 Πολλαπλασιασμός αλά Ρωσικά

 Τον χρησιμοποιούσαν οι Ρώσοι χωρικοί πριν από 200 χρόνια, τώρα τον χρησιμοποιούν οι προγραμματιστές  στους ηλεκτρονικούς υπολογιστές. Ας υποθέσουμε ότι θέλουμε να πολλαπλασιάσουμε τους  αριθμούς 25 και 42 .Γράφουμε τους δυο αριθμούς σε δυο στήλες .Επιλέγουμε  μια στήλη ας πούμε την αριστερή και διαιρούμε διαδοχικά τον αριθμό δια του 2 αψηφώντας το υπόλοιπο ,ωσότου να φτάσουμε στην μονάδα. Στην δεξιά στήλη διπλασιάζουμε διαδοχικώς τις ποσότητες έτσι ώστε οι αριθμοί στις δυο στήλες  να σχηματίζουν γραμμές.
    25    42
   12     84
    6      168
    3      336
    1       672
Υπογραμμίζουμε  τους αριθμούς της αριστερής στήλης που είναι περιττοί.
   25       42
   12       84
    6      168
    3      336
    1      672
 Προσθέτουμε όλους τους αριθμούς της δεύτερης στήλης   που βρίσκονται δίπλα σε υπογραμμισμένο αριθμό.
42+336+672=1050.Ο αριθμός 1050  είναι το ζητούμενο γινόμενο
  
Αιγυπτιακός πολλαπλασιασμός

 Στον πάπυρο Ρίντ, την πλουσιότερη πηγή που διαθέτουμε  για τα αιγυπτιακά μαθηματικά  υπάρχει σαφής αναφορά για τον τρόπο  με τον οποίο πολλαπλασίαζαν οι  αρχαίοι Αιγύπτιοι. Έστω ότι θέλουμε να πολλαπλασιάσουμε τους αριθμούς 31x42 , σύμφωνα με τους αρχαίους Αιγύπτιους γράφουμε  την μονάδα σε μια στήλη και σε μια άλλη, διπλανή στήλη τον ένα από τους δυο παράγοντες του πολλαπλασιασμού .Κατόπιν χωρίζουμε τις δυο στήλες με καθετή γραμμή.
Δηλαδή:
                                    1       31
 
   Στην συνέχεια διπλασιάζουμε διαδοχικά  τους δυο αριθμούς, μέχρις  ότου ο μικρότερος αριθμός (αυτός δηλαδή από την στήλη που ξεκινά με την μονάδα) να είναι μεγαλύτερος από τον δεύτερο παράγοντα ( το 42 δηλαδή)
                                    1         31
                                    2          62
                                    4        124
                                    8        248
                                    16       496
                                    32        992
                                    64      1984
Στην αριστερή στήλη, και από  κάτω προς τα πάνω, αθροίζουμε τους πρώτους αριθμούς που το άθροισμα τους να είναι 42 (στο παράδειγμα 32+8+2).Ακολούθως, αθροίζουμε όλους τους αριθμούς της δεξιάς στήλης  που βρίσκονταν στην ιδία γραμμή με τους προηγούμενους αριθμούς .Στην περίπτωση μας  θα ήταν:62+992+248=1302, που όντως είναι το γινόμενο του πολλαπλασιασμού 31x42.
 
Αραβικός πολλαπλασιασμός

Οι άραβες  έκαναν διαφορετικά τον πολλαπλασιασμό. Δειτε:
Ας υποθέσουμε ότι θέλουμε να κάνουμε τον πολλαπλασιασμό 349 x37 .
Τοποθετούμε τους αριθμούς  349,37 στον παρακάτω πίνακα  ως εξής:
                 

Τοποθετούμε τους δυο όρους του γινομένου (349,37) τον έναν οριζόντια και τον άλλο κάθετα στον παραπάνω πίνακα .Χωρίζουμε με μια διαγώνια γραμμή τα έξι κελιά που ορίζουν οι όροι του γινομένου. Πολλαπλασιάζουμε κάθε ψηφίο του οριζοντίου όρου(349) με  κάθε ψηφίο του κάθετου όρου(37). Το αποτέλεσμα θα είναι ένας αριθμός  που  θα καταχωρηθεί στο αντίστοιχο κελί ανά ψηφίο στα δυο μέρη του αντίστοιχου κελιού. (Δείτε το σχήμα)
Αφού συμπληρωθεί ο πίνακας αθροίζουμε διαγώνια .(στο σχήμα τα διαγώνια αθροίσματα έχουν διαφορετικά χρώματα)
                  

Άρα τελικά 349x37=12913.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Related Posts Plugin for WordPress, Blogger...