Τα πολυόμινα είναι επίπεδα γεωμετρικά
σχήματα που προκύπτουν από την «συγκόλληση» ίσων τετραγώνων,ανάλογα με το πλήθος των
τετραγώνων ονομάζονται μονόμινα,δυόμινα, τριόμινα κ.ο.κ.Το μονόμινα και το
δυόμινα μπορούν να πάρουν μόνο μια μορφή όμως από κει και πέρα τα σχήματα ποικίλουν.Η μελέτη των πολυομίνων σχετίζεται με την κάλυψη ενός επίπεδου σχήματος από άλλα γεωμετρικά σχήματα,όσο και με τους μετασχηματισμούς γεωμετρικών σχημάτων.
Στο παιχνίδι ΤΕΤΡΙΣ "πέφτουν" τετραόμινα (τα σχήματα στο κίτρινο πλαίσιο) και ο παίκτης τα οδηγεί,με την δυνατότητα να μπορεί να τα περιστρέψει έτσι ώστε να σχηματιστούν γραμμές που "εξαφανιζονται".Είναι δυνατόν κάποιος παίκτης με καθένα από τα επτά να σχηματίσει το ορθογώνιο 4x7 που φαίνεται στην μπλε οθόνη;.Κάθε τετραόμινο πρέπει να χρησιμοποιηθεί μια φορά.
Λύση
https://app.box.com/s/7pzxponyfutr2msyxdx8obiwj1wjcer6
O μαθηματικός -συγγραφέας Alex Bellos στο διαδικτυακό κανάλι Numberphile εξηγεί τα περί πενταομίνου και Τέτρις και φαίνεται να πιστώνει την πατρότητα τουλάχιστον των πενταομίνων στον Άγγλο δημιουργό προβλημάτων του προηγούμενου αιώνα Henry Ernest Dudeney ( http://mathhmagic.blogspot.com/2016/02/blog-post_80.html)
(*)Ολίγη από ιστορία
Ο Ρώσος μαθηματικός Αλεξέι Παγιτνοφ θεωρείται ο άνθρωπος που συνέλαβε την ιδέα του Τέτρις,ενός βιντεοπαιχνιδιού με ελληνική ρίζα.Το 1985,εμπνευσμένος από ένα παιχνίδι που είχε αγοράσει, με την ονομασία πεντάμινο (όπου ο παίκτης προσπαθούσε να τοποθετήσει 12 κομμάτια-κάθε κομμάτι αποτελούνταν από 5 κομμάτια) προσπάθησε να δημιουργήσει ένα παραπλήσιο βιντεοπαιχνίδι.Με την βοήθεια του συναδέλφου του στην σοβιετική ακαδημία Ντιμίτρι Παβλόσκι και του 16χρονου Βλαντιμίρ Γερασίμοφ,ο Παγίτνοφ καταλήγει σε επτά διαφορετικά κομμάτια(τετράγωνα, σε σχήμα Γ, ευθείες κ.τ.λ) με τέσσερα κουτάκια αντί για πέντε έτσι προέκυψε και η ονομασία Τέτρις.
https://app.box.com/s/7pzxponyfutr2msyxdx8obiwj1wjcer6
O μαθηματικός -συγγραφέας Alex Bellos στο διαδικτυακό κανάλι Numberphile εξηγεί τα περί πενταομίνου και Τέτρις και φαίνεται να πιστώνει την πατρότητα τουλάχιστον των πενταομίνων στον Άγγλο δημιουργό προβλημάτων του προηγούμενου αιώνα Henry Ernest Dudeney ( http://mathhmagic.blogspot.com/2016/02/blog-post_80.html)
(*)Ολίγη από ιστορία
Ο Ρώσος μαθηματικός Αλεξέι Παγιτνοφ θεωρείται ο άνθρωπος που συνέλαβε την ιδέα του Τέτρις,ενός βιντεοπαιχνιδιού με ελληνική ρίζα.Το 1985,εμπνευσμένος από ένα παιχνίδι που είχε αγοράσει, με την ονομασία πεντάμινο (όπου ο παίκτης προσπαθούσε να τοποθετήσει 12 κομμάτια-κάθε κομμάτι αποτελούνταν από 5 κομμάτια) προσπάθησε να δημιουργήσει ένα παραπλήσιο βιντεοπαιχνίδι.Με την βοήθεια του συναδέλφου του στην σοβιετική ακαδημία Ντιμίτρι Παβλόσκι και του 16χρονου Βλαντιμίρ Γερασίμοφ,ο Παγίτνοφ καταλήγει σε επτά διαφορετικά κομμάτια(τετράγωνα, σε σχήμα Γ, ευθείες κ.τ.λ) με τέσσερα κουτάκια αντί για πέντε έτσι προέκυψε και η ονομασία Τέτρις.
Το 1986 το παιχνίδι έγινε διαθέσιμο εκτός Ρωσίας μέσω της Nintendo και θεωρείται «το πρώτο προϊόν της Ρωσίας που εισήχθη στις Η.Π.Α.»
Υπήρξαν πολλές διαμάχες για τα πνευματικά δικαιώματα του παιχνιδιού διότι πολλές εταιρείες εκμεταλλευόμενες τα κενά νομοθεσίας στην τότε Ε.Σ.Σ.Δ. είχαν δημιουργήσει διάφορες εκδόσεις του.
Για παράδειγμα η Nintendo προωθώντας το μέσω του πρώτου GameBoy, αύξησε εντυπωσιακά τις πωλήσεις της, κάτι το οποίο όμως «βοήθησε» το Tetris να γίνει ένα από τα πιο γνωστά βιντεοπαιχνίδια όλων των εποχών. Το 1996 ο Pazhitnov και o Henk Rogers ίδρυσαν την εταιρεία Tetris για να λαμβάνουν τα δικαιώματα για τη δημιουργία του παιχνιδιού. Έως τότε δεν ήταν εύκολο να λάβουν μερίδιο από τα δικαιώματα του Tetris, διότι όταν το δημιούργησαν ήταν στο κρατικό Dorodnitsyn Computing Center της Σοβιετικής Ένωσης, όπου και αυτοί διεκδικούσαν μερίδιο επί των κερδών.
Σύμφωνα με ερεύνα-αν δεν είναι από τις γνωστές "έρευνες" -της Ιατρικής σχολής του Χάρβαρντ,το Τετρις είναι άκρως
εθιστικό παιχνίδι.Παρατηρήθηκε λοιπόν ότι άτομα που έπαιζαν πολλές ώρες,έβλεπαν στον ύπνο τους όνειρα που προσπαθούσαν να ταιριάξουν διάφορα γεωμετρικά
σχήματα που έπεφταν από ψηλά.Στην ίδια έρευνα καταγράφηκαν και αρκετές ευεργετικές
ιδιότητες του παιχνιδιού,όπως ότι μπορεί να αποβεί εξαιρετικό αγχολυτικό σε όσους
πάσχουν από κατάθλιψη,αλλά και ότι μπορεί να βελτιώσει τον τρόπο με τον οποίο
ένα άτομο επιλύει προβλήματα.
Σε συνέντευξή του ο Παγιτνοφ μεταξύ άλλων αναφέρει για το Tetris:
«Σκέφτομαι το ίσιο κομμάτι, ως κομψό άτομο που είναι καλό σε μια κρίση, αλλά είναι λίγο μάταιο. Το τετράγωνο είναι λίγο μικρότερο, όχι τόσο λαμπρό, αλλά χρήσιμο στη σωστή θέση. Τα σχήματα S και Z είναι πιο απαιτητικά, αλλά έχουν υψηλό επίπεδο ενσυναίσθησης. Το T είναι ένα διασκεδαστικό κομμάτι-θηρίο που μερικές φορές εμφανίζεται στο «σπίτι» σας σε ακατάλληλες στιγμές.»
«Κάθε κομμάτι έχει προσωπικότητα», λέει. «Ο τετράγωνος τύπος είναι πολύ αγενής και ηλίθιος, γιατί δεν περιστρέφεται. Το αγαπημένο μου είναι το κομμάτι J γιατί μπορεί να χρησιμοποιηθεί με πολλούς διαφορετικούς τρόπους. Υπήρχε μια εποχή που προσπάθησα να γράψω μια ιστορία με βάση όλα τα κομμάτια, αλλά δεν είχα έμπνευση. Όμως ίσως την βρω στο μέλλον. Το Tetris είναι μια ατελείωτη ιστορία, οπότε δεν θα υπάρξει ποτέ στιγμή που δεν θα δημιουργείται κάπου ένα νέο έργο».
Ο τελικός στο παγκόσμιο πρωτάθλημα Tetris το 2016.
Update
Τον ερχόμενο Μάρτη πρόκειται να κυκλοφορήσει μια ταινία με την απίστευτη ιστορία του παιχνιδιού.
Καλό φθινόπωρο (με το μαλακό😊) ΘΑΝΑΣΗ!
ΑπάντησηΔιαγραφήΤο ορθογώνιο 4Χ7 μπορούμε να το φανταστούμε σαν μια σκακιέρα 4Χ7 τετραγώνων που έχουν βαφεί εναλλάξ μαύρα και λευκά. Δεδομένου ότι ο συνολικός αριθμός τετραγώνων αυτής της σκακιέρας είναι 28, δηλαδή ζυγός, τα πλήθη των λευκών και των μαύρων τετραγώνων θα είναι ίσα, δηλαδή θα πρέπει να υπάρχουν 14 λευκά και 14 μαύρα τετράγωνα.
Για να υπάρχει δυνατότητα, με τα 7 δεδομένα διαφορετικά μπλοκ των 4 τετραγώνων και χρήση του κάθε μπλοκ από μία ακριβώς φορά, να καλυφθεί πλήρως μια σκακιέρα 4Χ7, θα πρέπει αντιστοίχως τα τετράγωνα του κάθε μπλοκ να είναι δυνατό να βαφούν εναλλάξ μαύρα και λευκά και να συναρμολογηθούν κατάλληλα ώστε να δίνουν μια διάταξη σκακιέρας 4Χ7 με 14 μαύρα και 14 λευκά τετράγωνα.
Ωστόσο, από τα 7 μπλοκ των 4 τετραγώνων, τα 6 βάφονται δίνοντας το καθένα και από ένα μπλοκ με 2 μαύρα και 2 λευκά τετράγωνα, αλλά υπάρχει μπλοκ, συγκεκριμένα το τέταρτο κατά σειρά, που βάφεται δίνοντας ή 3 μαύρα και 1 λευκό ή 3 λευκά και 1 μαύρο τετράγωνα. Επομένως, όπως και αν βαφούν τα 7 μπλοκ, θα δώσουν 15 τετράγωνα του ενός χρώματος και 13 τετράγωνα του άλλου και όχι 14 και 14 αντιστοίχως, όπως απαιτείται. Συνεπώς το ζητούμενο δεν είναι εφικτό.
Καλό Φθινόπωρο Θανάση. Ναι έχεις δίκιο, ο χρωματισμός αποδεικνύει ότι είναι αδύνατο να δημιουργηθεί το 4x7.
Διαγραφή